Antisense oligonucleotides: from design to therapeutic application.

نویسندگان

  • Jasmine H P Chan
  • Shuhui Lim
  • W S Fred Wong
چکیده

1. An antisense oligonucleotide (ASO) is a short strand of deoxyribonucleotide analogue that hybridizes with the complementary mRNA in a sequence-specific manner via Watson-Crick base pairing. Formation of the ASO-mRNA heteroduplex either triggers RNase H activity, leading to mRNA degradation, induces translational arrest by steric hindrance of ribosomal activity, interferes with mRNA maturation by inhibiting splicing or destabilizes pre-mRNA in the nucleus, resulting in downregulation of target protein expression. 2. The ASO is not only a useful experimental tool in protein target identification and validation, but also a highly selective therapeutic strategy for diseases with dysregulated protein expression. 3. In the present review, we discuss various theoretical approaches to rational design of ASO, chemical modifications of ASO, ASO delivery systems and ASO-related toxicology. Finally, we survey ASO drugs in various current clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development

Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...

متن کامل

Antisense Oligonucleotide: Basic Concept and its Therapeutic Application

Antisense oligonucleotides are synthetic genetic materials that interact with natural genetic material and modulate them in a systematic way. Antisense oligonucleotides as a form of molecular medicine to modulate gene function was first acknowledged in the late 1970s. This therapy involves blocking translation, thereby inhibiting protein formation. Recently, antisense technology has been resurr...

متن کامل

Antisense oligonucleotides: basic concepts and mechanisms.

Conceptual simplicity, the possibility of rational design, relatively inexpensive cost, and developments in the sequencing of human genome have led to the use of short fragments of nucleic acid, commonly called oligonucleotides, either as therapeutic agents or as tools to study gene function. Furthermore, in the past decade, the development of antisense oligonucleotide technologies as therapeut...

متن کامل

Cell-penetrating peptides and oligonucleotides: Design, uptake and therapeutic applications

Regulation of biological processes through the use of genetic elements is a central part of biological research and also holds great promise for future therapeutic applications. Oligonucleotides comprise a class of versatile biomolecules capable of modulating gene regulation. Gene therapy, the concept of introducing genetic elements in order to treat disease, presents a promising therapeutic st...

متن کامل

Antisense DNA and RNA agents against picornaviruses.

Anti-picornaviral antisense agents are part of a broader group of nucleic acid-based molecules developed for sequence-specific inhibition of translation and/or transcription of the target sequence through induced nuclease activity or physical hindrance. Three types of nucleic acid-based gene silencing molecules can be distinguished, including DNA-base antisense oligonucleotides (ASO), nucleic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical and experimental pharmacology & physiology

دوره 33 5-6  شماره 

صفحات  -

تاریخ انتشار 2006